
Vol.:(0123456789)1 3

Int. j. inf. tecnol.
https://doi.org/10.1007/s41870-022-01047-z

ORIGINAL ARTICLE

A deep reinforcement learning technique for bug detection
in video games

Geeta Rani1 · Upasana Pandey2 · Aniket Anil Wagde1 ·
Vijaypal Singh Dhaka1

Received: 8 April 2022 / Accepted: 22 July 2022
© The Author(s), under exclusive licence to Bharati Vidyapeeth’s Institute of Computer Applications and Management 2022

1 Introduction

Increasing the interest of young minds towards technology
is a crucial reason for spending significant time on screen. It
has attracted the researchers to focus on designing and devel-
oping techno-games such as Space Invaders, The Legend of
Zelda, Mario and Pacman, etc. These games are a source of
entertainment for people of all age groups. Moreover, Vla-
chopoulos, and Makri discussed that computer-based games
are a good source of enhancing learning from kindergarten
to higher education [1]. These games help to improve the use
and to enhance the coordination into different sense organs.

We observe a consistent rejection of computer games
due to programming errors. Delicate product bugs are dis-
appointing for players, expensive for publishers, and destruc-
tive to their notoriety. For instance, a bug in the ‘Nintendo’
release of ‘The Legend of Zelda: Breath of the Wild’ in 2017
facilitates the players to progress playing but allows them to
bypass the effects of temperature on the game. It leads to a
significant degradation in the entertainment of playing the
game [2]. Moreover, the ‘NBA Elite 2011’ got rejection due
to issues in its programming quality [3].

There is a vital requirement to detect the programming
bugs to minimize the chances of rejection of the developed
games as early as possible. It gives time for bug removal
from a game before its actual implementation. It is also help-
ful for frameworks where it is difficult to adjust a mistake
once launched or delivered. Therefore, a need to introduce
effective testing mechanisms arises. State-of-the-art reveals
a significant contribution in bug detection. For example, the
researchers Cruz, and Uresti give details of the impacts of
Artificial Intelligence (AI) on game developers [4]. They
claimed the use of AI and its tools in the game designing,
developing, and testing.

Abstract The objective of this research is to design the
deep reinforcement neural learning-based model that detects
the bugs in a game environment. The model automates the
bug detection and minimizes human intervention. It makes
effective use of the Deep-Q-Network to design and develop
the model ‘RLBGameTester’ for measuring the high dimen-
sional sensory inputs. The model modifies the environment
to intercept the game screen. It also adds faults to the game
before submitting it to the Deep-Q-Network. It calculates the
values of the loss function at different iterations. The differ-
ences in the values of the loss functions in a bug-free and the
bug containing game environment point out the presence of
a bug. It also locates the position where the bug appears. The
proposed model is useful for multiple game environments
with minimum customization. Its applicability for blurred as
well as non-blurred inputs at different platforms proves its
efficacy. Employing this model may prove a game changer
in the game designing industry.

Keywords Deep-Q-Network · Reinforcement learning ·
Bug · Testing · Deep learning · Neural network

 * Vijaypal Singh Dhaka
 prof.dhaka@gmail.com

 Geeta Rani
 geetachhikara@gmail.com

 Upasana Pandey
 coe.upasana@gmail.com

 Aniket Anil Wagde
 aniket.wagde@gmail.com
1 Department of Computer and Communication Engineering,

Manipal University Jaipur, Rajasthan, India
2 Department of Computer Science and Engineering (Artificial

Intelligence), ABESIT College of Engineering, Ghaziabad,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-022-01047-z&domain=pdf

 Int. j. inf. tecnol.

1 3

Further developments in AI introduced the use of rein-
forcement learning in different domains. It is applied in
various application areas such as performing troublesome
aerobatic stunts with a helicopter [5], playing Backgammon
robotics [6], playing Atari game [7], and video game test-
ing [8]. Reinforcement learning is applied to develop auto-
matic and artificial reasoning, enabling a machine to play
aggressively against the global data of sports champions [9].
It creates advancements in virtual benchmarks set to test
the reinforcement agents. Reinforcement learning is also a
promising way to deal with numerous issues such as in-gen-
uine assignments, checking generalizability of formulations
in a controlled setting [9], simulating social intelligence to
facilitate human-machine interaction, and creating coordina-
tion in robots to synchronize their movements [10].

It is clear from the above discussion that reinforcement
learning is helpful in problem-solving and sequential deci-
sion making. Hence, it can fulfill the requirements of game
designing, developing, and testing. Moreover, the existing
models require human supervision for testing the perfor-
mance of a player at each state. It motivated the authors
to apply reinforcement learning for developing the tool for
automated testing of a game environment without human
supervision.

In this manuscript, the authors propose the model
‘RLBGameTester’ that makes effective use of reinforcement
learning for designing and testing a game environment. This
AI-based self-learning model identifies the discrepancies
such as blank screens and incorrect refreshing of the game
state under a specific set of conditions. The model aims at
minimizing the requirement of manual testing and reducing
the cost of testing a game. The major contributions of this
research are as follows:

• Developing a reinforcement learning based tool for auto-
matic bug detection in a video game.

• Minimize the human intervention in bug detection.
• Reduce the requirements for manual and periodic testing

of a game.
• Minimize the cost of testing a video game.

The remaining part of the manuscript is organized as;
Sect. 2 presents the related literature. Section 3 offers the
background, and Sect. 4 demonstrates the materials and
methods. Section 4 also covers the experimental results.
Section 5 contains the discussion, and Sect. 6 presents the
conclusions of the work.

2 Literature review

Artificial intelligence has proven its potential in contrast
enhancement [11], object detection [12], and medical

imaging [13]. Recent advancements in artificial intelligence
increased the applications of reinforcement learning in dif-
ferent domains such as neuroscience, optimization control,
business strategy planning, aircraft control, robot control,
and game designing. Here, the authors focus on the research
works available in-game designing and testing.

The authors in reference [2], presented the review of
game designing models. They discussed that the ad-hoc
methods of game designing that are driven by experience
are the most opted strategies in the game industry. Next, the
authors in [14] gave a systematic review of the software life
cycle adapted for game development. They concluded that
there is a lack of a standard software life cycle for develop-
ing the game. They also highlighted that most of the research
works focus on the game development stage. Game testing
is still a less exploited area of the game industry.

A majority of environments are designed to offer the
rewards only at the final state (s) of a task. For example, in
a game, the player is rewarded with points on completing
a level of the game. On the other hand, the earned reward
points are decreased as a punishment for losing a life in the
game. There is no track of the rewards at intermediate states.
Thus, it is difficult to track the performance of a player in
medium conditions. To address this issue, the authors in [3]
presented the techniques for improvement in game design-
ing. For further improvements Giannakopoulos, and Cot-
ronis successfully implemented the Q-learning network [15].
It is a model-free algorithm to train the agent for making the
best suitable decision in a specific set of conditions. This
technique of reinforcement learning simplifies the game
environment. A simple game environment favors an agent
to understand the far-reaching implications of acting [4].

Moreover, Q learning provides the false values of the
reward at each state. This value is named the Q value of
the state. The continuously assigned tips reveal information
about the degree of progress achieved at each state. Thus, it
resolves the problem of tracking the performance of a player
in intermediate conditions.

DeepMind builds the Deep Q-Network (DQN) model that
uses a deep learning model to predict the Q value of each
state [7]. It uses multiple layers of the artificial perceptron
to achieve higher levels of abstraction. These values are
evaluated to get the best possible next step. It ensures the
maximum potential Q value for the next state. For a wide
variety of games designed for humans, the DQN model is
efficient in playing at the human level or higher level(s) than
human beings.

The study of the research in-game testing shows that the
video game testing industry is entirely dependent on human
testers. Very little innovation is observed in this field. The
authors in [8] and [16] attempted to introduce automation
for detecting logical bugs in a game. However, it requires an
independent testing tool for each game. Moreover, it requires

Int. j. inf. tecnol.

1 3

detailed information about the internal state(s) of a game.
Also, it is ineffective in identifying the visual bugs in a
game. For example, it is unable to detect a bug if the change
in value affects the speed of players without visualizing any
effect on the screen. In such a scenario, DQN considers the
entire screen and the scores as inputs. DQN uses the Con-
volutional Neural Networks (CNN) to handle the raw pixel
inputs of the screen. It is completely autonomous and does
not require a human player to play the game while searching
the bugs. It is efficient in playing the game and searching for
bugs simultaneously. Based on the advantages, the authors
employed the DQN to develop the model ‘RLBGameTester’
proposed in this manuscript.

3 Background

In this section, the authors present the details about the
structure of a video game, techniques used to develop and
test a video game.

3.1 Structure of a video game

The literature study teaches that most techno games are
designed using the concepts of object-oriented program-
ming. In this approach, each element of a game is an object.
The centralized piece of code is written for the game. This
code is named the game loop. Each object present in this
loop is monitored and recalculated. However, no change in
the state is done without receiving a response from a user.

A mechanism is included in each game to ensure that
it is played at a pre-set speed. The number of Frames Per
Second (FPS) determines the rate of playing a game. FPS is
the number of new frames displayed to the player in one sec-
ond. The studies demonstrate that human beings can observe
changes up to 500 FPS [17]. However, FPS is set to 60 for
a pleasant viewing experience while playing. There are two
methods to control the FPS: (i) fixed frame rate and (ii) vari-
able frame rate. In a fixed frame rate, the computer runs the
game loop faster than the required rate and then calls a sleep
function. This function sets the refresh rate precisely equal
to the value of the input parameter. If sleep function takes a
longer time, then the game appears to lag.

On the contrary, in the variable frame rate, the computer
shows a new frame at the end of each game loop. Here, the
refresh rate can be higher than the set parameter. It may lead
to inconsistency because it takes variable periods in different
iterations to complete the game loop. The Deep-Q-Network
(DQN) algorithm [18] is employed for game designing. The
algorithm uses ‘Q’ value of each state of the game and learns
the best action to perform at a given state. The deep neural
network of DQN is useful for estimating ‘Q’ value function.

3.2 Techniques of finding bugs in video games

The attack of bugs in the running environment of a video
game is a cause of unexpected interruptions in the game
environment. To find the bugs, the game developers rely on
the adoption of one of the following testing techniques in the
life cycle of a game project.

3.2.1 Manual testing

In this strategy, the testing team needs to write rigorous test
cases for testing the gameplay environment and the usability
of the game. At an initial stage, an implicit testing process
is carried out to perform a set of tests to remove the errors
from the code. For further testing, an external and inter-
nal testing team(s) design rigorous test cases. Each game
tester manually reports every bug identified with a detailed
description. Now, the programmers address these bugs with
utmost priority [19].

In case an updated version of the game is launched, it is
sent to the bug testers. In such cases, the main objectives
are to test the new features and functionalities added to the
previous version of the game. Introducing new features in
a game can potentially create bugs in earlier modules of
a game. Thus, there is a vital requirement of a complete
assessment of the code and to report the bugs in an updated
version of the game.

This manual testing strategy requires a workforce.
Designing test cases and identifying bugs manually is a
time-consuming process. Hence, it is costly. Moreover, the
number of test cases is limited. In this strategy, testers can
only report bugs visible to them on the Graphical User Inter-
face (GUI). Also, the detection of bugs is dependent on the
knowledge of the testing team(s). There can be a possibility
that one or more bugs remain unnoticed, or one or more
essential features of the game can be flagged as a bug(s).

3.2.2 Runtime monitoring

In this strategy, the monitoring of the game is done at runt-
ime for dynamically checking and enforcing the constraints.
This is successful in monitoring the working of a game at
the finer level [19].

In this strategy, the game is constantly evaluated based on
the pre-set rules. For example, the jump time cannot exceed
3-s, and jump height is limited to 7-units in a particular
game. If any of the pre-set rules are violated, the monitoring
system will reevaluate values and attempt to bring consist-
ency again.

The runtime monitoring requires a specific set of rules
for each game. Also, the game tester needs to understand

 Int. j. inf. tecnol.

1 3

the details of the code. The requirement to perform the
game-specific code intrusion and understand each game’s
working mechanism is quite tricky. This created the
demand for developing a generalized solution that requires
minimal code intrusion.

The research community contributed to developing the
game monitoring systems with minimal code intrusion.
They developed monitoring systems such as JavaMOP
[20] and LARVA [21]. But, all these systems focus on
monitoring method calls in Java programs. Thus, these
are game-specific as well as dependent on the program-
ming language. Moreover, there is a negligible scope to
employ these systems in other programming languages.
Therefore, it becomes a point of concern for the game
developers who develop their programming languages and
Unreal Script [22] for developing the games. In such cases,
the pre-developed monitoring systems fail to perform the
runtime verification of games.

3.2.3 Reward hacking

In reinforcement learning, ‘Reward Hacking’ is when the
model learns to take advantage of the unintended conse-
quences of one or more actions in the simulated world.
This happens due to the inability of human beings to
specify the expectations that an AI-based system can fully
understand. This inability is called the value-alignment
problem. Furthermore, the failure to predict the exact
action of an agent makes the method unreliable because it
can cause a threat to human life in critical situations [23].

In the modern era, erroneous coding practices cause an
exponential increase in in-game releases with bugs. The
high complexity of games makes the debugging process
extraordinarily lengthy and challenging. The reward hack-
ing is beneficial to game developers and testers to uncover
bugs from the complex games.

For example, in the game ‘Coast Runner’s boat racing’,
the agent learns how to maximize the game’s score by
spinning in circles and colliding with objects rather than
racing. This indicates that the reward function is inappro-
priate for the racing game. In one more example, QBert
Atari proposed the reinforcement learning algorithm and
uncovered a bug in the game that remained unknown to
humans [7]. These algorithms identify the inconsistencies
in the game. Thus, these can learn ways to cheat in a game.

The above discussion shows that manual and run-time
testing challenges can be resolved by applying the deep
learning models. The effectiveness of these models in
designing and testing the games gives the inspiration to
develop a deep reinforcement learning model ‘RLBGame-
Tester’ for game playing as well as monitoring the internal
loss functions of the game to identify a bug.

4 Materials and methods

In this section, the authors will discuss the experimental
setup and the dataset used to evaluate the model ‘RLB-
GameTester’. They will also discuss the experimental results
obtained on performing the set of experiments.

4.1 Experiments

The authors used python 3.6 for developing the model. They
used the ‘Tensorflow’ for implementing the Deep Q-Net-
work (DQN). The authors performed the set of experiments
using the ‘paperspace’ cloud platform. They executed their
model on ‘Ubuntu 14.04’ Operating System (OS) and the
graphic card ‘Nvidia Quadro p4000’ on GPU.

The DQN based model ‘RLBGameTester’ is designed by
implementing the Q-learning algorithm. The authors applied
the standard approach given at [24] to re-calculate the value
of ‘Q’ for each possible action. This approach requires a
forward pass for each step. Each pass linearly adds the com-
putational cost of increasing the number of possible activi-
ties. The architecture of ‘RLB-GameTester’ is designed so
that a single forward pass can calculate the values of ‘Q’ for
all possible actions [3] resolves the problem of an increase
in computational cost.

4.1.1 Hyper parameters of DQN

The proposed model ‘RLB-GameTester’ uses the following
hyperparameters.

 (i) Batch Size: Batch size represents the number of games
running in parallel. In this manuscript, the authors
chose the batch size of 32 instances.

 (ii) Random start: It represents the maximum frame num-
ber where the game can start. In this manuscript, the
random start is set at 30. This shows that the game can
start randomly from any fame number from 0 to 29.

 (iii) CNN_format of data layout: The 4-Dimensional (4-D)
array that contains the information in the form of
Number of Images (N), number of feature maps (C),
image height (H), and the image width (W). The data
layout’ NCHW’ is the default layout in tensor flow.
Here, ‘N’ denotes the number of batches, ‘C’ is the
number of channels, ‘H’ is the height, and ‘W’ is the
width of the data. It is ideal for training with Nvidia
GPUs available at [24]. Therefore, in this manuscript,
the authors used the ‘NCHW’ data layout for experi-
ments.

 (iv) Discount: This is an arbitrary value multiplied by the
target Q-value to avoid the problem of overfitting. For
the experiments, the authors set the value of discount
as 0.99 based on its impact on the performance of

Int. j. inf. tecnol.

1 3

the model. The increase in its value to 1 or above
forces the model to assign a higher weightage to gains
obtained from the forthcoming steps. This may lead
to a hike in the reward of any step up to infinity. On
the contrary, the decrease in its value forces the model
to assign the low weightage to the forthcoming steps.
Therefore, the model takes shortsighted steps to boost
its rewards.

 (v) Learning_rate: The learning rate of the model is a
parameter that determines the change in the weights
per epoch. It represents the initial learning rate of the
model. The authors set the value of Learning_rate as
0.00025 based on the results obtained on performing a
set of experiments. On increasing its value beyond the
pre-set value, the model becomes ineffective to con-
verge at the point of global minima. This happens due
to its constant overestimation of the weight change
because of a high learning rate. On the other hand, the
decrease in its value takes a long time to converge to
the global minima. This happens because the learning
steps are too long.

 (vi) Learning_rate_minimum: This is the minimum learn-
ing rate of the model. The authors used its default
value, 0.00025.

 (vii) Learning_rate_decay: This represents the rate of
change in the learning rate. The authors set the value
of Learning_rate_decay as 0.96 based on the set of
experiments. Increasing or decreasing its value up to
4% did not degrade the performance of the model.
This is due to the fact that; the current learning rate of
the model is equal to the minimum learning rate that
does not decrease further.

 (viii) Learning_rate_decay_step: It represents the step num-
ber after which the learning rate of the model changes.
The authors set the Learning_rate_decay_step as 500.
It indicates that the learning rate of the model varies
after every 500 steps. On performing the set of experi-
ments, the authors observed that this value does not
affect the model’s performance. This is because the
current learning rate is equal to the minimum learning
rate, and it will not decrease further.

 (ix) History_length: It is the number of frames stored in
the history of the model. The model refers, its history
length at every training state. In this manuscript, the
authors set the value of History_length as 4. The value
is selected based on the number of frames required to
gather enough information needed for decision mak-
ing. For example, in a turn-based game such as chess,
a single frame is sufficient. On the contrary, the car

racing game requires multiple frames to understand
the position and speed of cars, direction of movement,
and acceleration. On performing the set of experi-
ments, the authors observed that there is no change in
the performance of the model on increasing its value
beyond four.

 (x) Train_frequency: It is the number of frames encoun-
tered between two successive training steps. In this
manuscript, the authors set the value of Train_Fre-
quency as four based on the set of experiments. The
training step is not required at each frame because
tiny information gain occurs between two consecutive
frames. Information increases significantly at every
stage 4th frame.

 (xi) Learn_start: It is the step number at which training of
the model starts. The authors set the value of Learn_
start as 500. It indicates that the training of the model
begins at the 500th step. In earlier steps, the model
records the significant information about the mecha-
nism of the game.

 (xii) Min_delta: It is the minimum value of reward fed to
the model. The authors set their value as − 1. There-
fore, the value of the negative reward function can
reach up to − 1. It is useful in avoiding the problem
of attaining the extreme values of the reward function.
Thus, it resulted in efficient training of the model.

 (xiii) Max_delta: It is the maximum value of reward fed to
the model. The authors set its value as 1. Therefore,
the maximum reward function can attain the highest
value 1. It helps in avoiding the problem of extreme
values of the reward function. Hence, the training of
the model is effective.

 (xiv) Screen_width and screen_height: These are the dimen-
sions of the screen in terms of its width and height.
The model received these as input. The authors set the
value of dimensions 84 × 84 for the model ‘RLBGam-
eTester’.

4.1.2 Test plan

The authors used the above mentioned list of hyper param-
eters and implemented the test plan given in algorithm 1 for
automatic bug detection in a game.

Algor i thm 1: Test p lan for the proposed
‘RLBGameTester’

 Int. j. inf. tecnol.

1 3

as input. At the initial step, a point is identified, where the
game screen is fed as an input to the model. At the next
step, a point is identified where the changes in the input are
made before it is fed to the model. Identifying these points
is essential for defining the number of iterations required
to insert a bug into the game and developing the following
three types of bugs.

 (i) White dots: This bug inserts a random number of pix-
els into the screen before its image is given as input
to the model. The random number is pre-set in the
range of 10–20 white dots of dimension 4 × 4 pixels.
The model randomizes the positions of these pixels
in each frame. This bug leads to the appearance of
10–20, flickering and random white dots on the screen
to a human player.

 (ii) Black Screen: Here, the value of the current reward is
given as an input to the model. But, no visual infor-
mation is fed to the model. The model is still in the
control of sprite. Therefore, it can control the rewards
up to a pre-set extent. This bug makes the appearance
of the entire screen black. It seems that the game is
completely crashed.

 (iii) Sprite Disappearing: The bottom 20% of the screen
disappears when this bug is encountered in the game.
It implies that the player’s sprite disappears, and the
spaceship is not visible. It leads to the loss of enor-
mous information. But, it does not have a significant
impact on the actual screen fed to the model.

After developing the bugs, the authors created different
functions that received 84 × 84 display as input and warped

Fig. 1 Process of Phase 1

After following the test plan shown in algorithm 1, it was
observed that that the values of loss function of the DQN
rises when it encounters unfamiliar states such as bugs.

4.1.3 Training and testing the model

The authors selected the game ‘Space Invaders’ for training
and testing the proposed model. The following two reasons
favor the selection of ‘Space Invaders’.

 (i) In this game, the model achieved a better performance
than human beings. It indicates that the model suc-
cessfully learned the entire mechanism of the game.

 (ii) The game ‘Space Invaders’ includes a large number
of moving objects. Thus, the model becomes resist-
ant to visual bugs. The insertion of a bug degrades
the performance of the model. In the worst case, the
model fails to detect bugs due to the high complexity
of the game.

To evaluate the performance of the model ‘RLBGam-
eTester,’ the authors created three different bug propaga-
tions and testing environments using DQN. They trained the
model for all the three bug propagations and testing environ-
ments on a single game running platform. In the training
session, the bugs are propagated manually. The values of
loss function are calculated before and after the bug propa-
gation. A sudden spike in the loss function and decrement
in the reward function shows that there is a bug in the run-
ning game environment. Thus, the system fails to play as
efficiently as it could play in a bug-free environment. The
authors explain the building, preparation of the environment,
and training of the model in the following two phases.

Phase 1 This phase involves the building of the model and
preparation of the environment.

The authors reduced the size of the input screen to
84 × 84. Also, they reduced the number of channels to one.
Thus, the model receives a single 84 × 84 grayscale display

Int. j. inf. tecnol.

1 3

the images to mimic the appearance of bugs. Now, the model
is trained and tested at different stages. On performing a set
of experiments, the authors claim that 420,000 iterations are
sufficient for training the model.

In Phase 1, the model defines the iteration where the bug
is to be inserted as an input to the game. The identified itera-
tions and different types of bugs developed are useful for
understanding the capabilities of the proposed model in the
detection of bugs into a game. Figure 1 shows the process
involved in Phase 1 of the experiment.

Phase 2 This phase is designed to monitor the changes in
the value of loss function on executing the model at the pre-
set parameters. It completes the rigorous training and testing
of the model in three steps.

In the first step, the model is trained without any bug.
The training is performed for 420,000 iterations. It famil-
iarizes the model with the details of the code and the
working mechanism of the game. The loss function val-
ues during this training step are recorded in a graph, as
shown in Fig. 3. These values are used as a reference point
to compare the model’s performance after inserting the
bug. At the next step, one or more bug(s) are introduced
in the game. Now, the model is trained for the next 30,000
iterations. The values of change in the loss function are
recorded in a graph. The model is again executed in a bug-
free environment at the last step, for the iteration range
from 450,000 to 500,000. It is crucial to test the robustness
of the model when it is reverted to the original gameplay.
This test is required because, in most of the games, the
bugs do not impact the complete life cycle of the game.
These bugs appear and disappear sporadically. Figure 2
shows the set of activities performed in the phase-2 of the
experiment.

4.1.4 Mechanism of bug detection

A game encounters numerous types of bugs. These bugs
can be simple such as the crashing of the game, which
leads to the appearance of a black screen while playing the
game. On the other hand, the bugs can be involved, such
as inappropriate dialogue of a character and repeating of
the word(s) by a character.

One model is not sufficient to deal with all kinds of
bugs. Therefore, different models are designed to provide
the best possible solution for a particular type of bug(s).

The proposed model understands the game as a col-
lection of interconnected states. It does not consider any
temporal relation in these states. This model considers
each frame as an independent state and identifies a state
that has never been encountered. The authors in reference
[8] claimed that the existing model does not consider the
outputs obtained in previous steps while making the deci-
sion. For example, the game shows unusual behavior for a
particular input. This behavior is not considered in deci-
sion-making when the same input is given to the model
at subsequent steps. However, ‘RLBGameTester’ is the
best suitable model for monitoring and flagging instances
of visual bugs. The authors developed a function to inter-
cept the screen before it is given as an input to the model,
test the efficacy of this model in monitoring, and flag the
instances of visual bugs. This function also inserts visual
bugs in the model and monitors the average value of the
loss function.

4.2 Results

For rigorous testing of the model ‘RLBGameTester,’ all the
test cycles are executed for 490,000 iterations. The data logs
created on executing the test cycles are collected, analyzed,
and displayed in graphical form using the tensor board. The
x-axis of each graph represents the iteration number, and the
y-axis represents the value of the loss function. A smoothen-
ing function is applied to make the graph easier to visualize
and improve its readability.

The authors evaluated the performance of the model in
three different types of testing environments. They intention-
ally inserted the three types of bugs, namely White Dots,
Black Screen, and Sprite Disappearing, to test the model’s
bug detection ability and robustness.

4.2.1 Testing environments

Initially, the game is seeded with three types of bugs: (1)
White Dots, (2) Black Screen, (3) Sprite Disappearing.
These bugs are seeded before applying the pre-processing
techniques to detect the bug that may appear in the game
before pre-processing the screen and the actual starting of Fig. 2 Process of Phase 2

 Int. j. inf. tecnol.

1 3

the game. Inserting these bugs is essential to visualize the
impact(s) of each type of bug on the model’s performance.
Now, the pre-processing is applied on the game screen to
reduce its dimensions. The screen size is reduced from
210 × 160 to 84 × 84 frames. The number of input channels
is reduced from three (RGB) channels to a single grayscale
channel. Thus, the computation time and the cost of the
‘RLBGameTester’ model decrease.

At the next step, the game screen is given as an input to
the model. The insertion functions are named as (1) insert
white dots, (2) insert black screen, (3) hides the players’
spaceship. These functions enable embedding a specific type
of bug after a pre-set number of iterations and at a pre-set
location of code.

At the last step, the ‘RLBGameTester’ is executed to eval-
uate its performance in the presence of one or more bugs in
the code. The change in the loss function indicates the pres-
ence of the bug in the code. Figure 3 shows the decline of
a loss function in a game with a bug-free environment. The
graph peaks show the growth of bugs. The value of the loss
function is high at the peaks. It indicates that the ‘RLBGam-
eTester’ model is shifting its weights drastically and learning
new information. The maximum new information is given at
these peaks through the screen to improve the model’s adapt-
ability. The new information can be an entirely new screen
that never appeared before or maybe a new bug. It is clear
from the graph shown in Figure 3 that the model achieves
the maximum value of loss function 0.33 at the iteration
number 20,000. The trends showing the change in values of
the loss function indicate the updating weights of the model.
The higher the value of the loss function, the greater will be
the changes in weights. A higher value of the loss function
also shows that the new information is given to the model.
If an abrupt and sharp increase in the loss value is reported,
then it is a clear indication that either a bug appeared in the
game or a huge amount of new information is given as an
input to the model. The testing team does not add any new
screen to the game used for testing. Therefore, the peaks
in the graph showing the abrupt rise in the values of loss
function report the abnormal behavior of the game caused
by one or more bugs present or inserted into the game. The

subsequent sub-sections present the propagation of different
types of bugs and their impact on the value of loss function.

4.2.2 White dots propagation

The authors designed the function ‘white dots propagation’
to insert a random number of square-shaped dots in a pre-
set range into the screen. The function receives the size of
dots and the number of dots appearing on the screen as the
input parameters.

Implementation: For performing the experiments, the
authors set the dot size of 2 × 2 and the number of dots in
the range of 5–20 per screen. The value is one is set for
the pixels showing the white dots. Whereas the float values
in the range of 0–1 are set for other grayscale pixels. The
model uses the ‘randint’ function of NumPy to choose the
number of dots appearing on the screen. The function ‘white
dots propagation’ randomizes the positions of dots for each
frame. It makes the screen non-static and disturbs the player.
However, in some cases, the model regains its normal behav-
ior even after inserting the bug into it. It ignores the white
dots and does not cause distractions for the player. It happens
when the model is rigorously trained until it learns that the
white dots are irrelevant information.

Expected Behavior: The bug ‘white dots’ is highly vis-
ible. It is very distracting to a human player. It also causes
an enormous change to the input model. Thus, it is easy to
spot this bug.

Actual Behavior: The model shows its expected behavior
before the bug is introduced. Its loss function remains in
the range of 0–2 in a bug-free environment. After introduc-
ing the bug, the model shows a significant spike in the loss
function. The value of the loss function rises beyond 100.
The abrupt and high change in the value of the loss function
makes this bug easily identifiable.

To instantly identify the bug, the threshold value of the
loss function is set 3. The value of the threshold, being
higher than the default value of the loss function, ensures
that the model will not mislead if there is no bug in the
game. Figure 4 shows the change in values of the loss func-
tion in a game environment with ‘white dots’ bug inserted
into the game at different iterations.

Fig. 3 Loss function without
bug propagation

Iteration Number

Lo
ss

 fu
nc

tio
n

Int. j. inf. tecnol.

1 3

On inserting the bug at the range of iterations from
100,000 to 150,000, the model reports the highest value of
the loss function 16, as shown in Fig. 4a. It is clear from the
graph that the model achieves this highest value and shows
the peak at the iteration number 150,000. On the contrary,
the highest value of the loss function beacomes 110, when
the bug is inserted at the range of iterations from 350,000
to 420,000. It is shown in Fig. 4b that the model achieves
this highest value and shows the peak at iteration number
410,000.

On inserting the bug at the range of iterations from
420,000 to 450,000, the highest value of the loss function
decreases sharply, and it becomes 0.6. It is clear from the
graph shown in Fig. 4c that the model achieves this highest
value and shows the peak at iteration number 420,000.

It is observed from the graphs shown in Fig. 4a–c, that
the model reports the variations in the highest values of loss
function when the ‘White Dots’ bug is inserted at a different
range of iterations. This is because the model continuously
learns the mechanism of the game and updates its weight
with a change in the values of the loss function.

4.2.3 Black screen propagation

The function ‘Black Screen’ is designed to simulate the
crashing of the complete game. The game with the bug
‘Black Screen’ displays only a black screen. The DQN is still
fully capable of controlling the game and feeding the inputs.

Implementation: To implement the bug ‘Black Screen’,
the authors multiplied the input matrices of the screen with
zero. This fills the complete matrices of the input screen
of 84 × 84 size with zero values. All entries with zero val-
ues represent that the game has been crashed and it will
never recover. The function needs to restart for recovering
the game and continue playing. The effect of this bug is
permanent. Thus, the authors executed the model for more
iterations. This is useful for the successful training of the
model. For example, the other bugs are removed after the
30,000 to 50,000 iterations. However, this bug is allowed to
run as a part of the game from 50,000 to 200,000 iterations.

Expected Behavior: The loss function is a combination
of the actual value of screen inputs and the uncertainty of
the model. Here, uncertainty the degree of variation in the

Fig. 4 a Loss function with
‘White dot bug’ inserted at the
iteration range from 100,000 to
150,000. b Loss function with
‘White dot bug’ inserted at the
iteration range from 350,000 to
420,000. c Loss function with
‘White dot bug’ inserted at the
iteration range from 420,000 to
450,000

(b)

(c)

Iteration Number

Iteration Number

Iteration Number

Lo
ss

 fu
nc

tio
n

Lo
ss

 fu
nc

tio
n

Lo
ss

 fu
nc

tio
n

(a)

 Int. j. inf. tecnol.

1 3

model’s behavior to adapt to the changes fed into it. The
encounter of the bug ‘Black Screen’ results in the abrupt rise
in the loss function. The bug leads to an abrupt decrease in
the value of loss if there is a lack of input given to the model.

 Actual Behavior: At the initial stage, before introduc-
ing the bug in the game environment, no deviation from
the expected behavior of the model is observed. As the
time for executing the game progresses, the loss function
of the model fluctuates slightly. However, it seems that
the fluctuation in the loss function is constant. This shows
that the model is not learning anything new, and the envi-
ronment is bug-free. The deviation in the loss function
makes the bug easily identifiable. Figure 5 demonstrates
the variations in the values of the loss function when the
bug ‘Black Screen’ is inserted into the game.

The graph is shown in Fig. 5a demonstrates the devia-
tion in the loss function in the presence of the bug ‘Black
Screen’ in the game environment.

It shows the spike of a loss function in the game envi-
ronment when the bug is inserted at the iterations from

100,000 to 150,000. The graph peak is obtained at the
value of 0.35 for the loss function. On inserting this bug
for the iterations from 250,000 to 450,000, a slight change
in the highest value of the loss function is observed. The
highest value of the loss function becomes 0.36, as shown
in the peak plotted in Fig. 5b. The bug ‘Black screen’
causes a slight decrease in the value of loss function
when it is inserted in the iteration range from 420,000 to
470,000. As shown in Fig. 5c, the graph peak is obtained
at the 0.33 value of the loss function.

It is observed from the graphs shown in Fig. 5a–c), that
the model reports the slight variations in the highest values
of loss function when the ‘Black Screen’ bug is inserted at
a different range of iterations. This is because the model
gradually learns the mechanism of the game and updates
its weights with a change in the values of the loss function
when the bug ‘Black Screen’ is inserted into the game.

Fig. 5 a Loss function with
‘Black Screen’ bug Inserted at
the iteration range from 100,000
to 150,000. b Loss function
with ‘Black bug inserted at the
iteration range from 250,000 to
450,000. c Loss function with
‘Black Screen bug’ inserted at
the iteration range from 420,000
to 470,000

(a)

(b)

(c)

lo
ss

 fu
nc

tio
n

Iteration Number

Iteration Number

Iteration Number

lo
ss

 fu
nc

tio
n

lo
ss

 fu
nc

tio
n

Int. j. inf. tecnol.

1 3

4.2.4 ‘Sprite disappearing’ propagation

Protecting the spaceship is the main objective of the game.
Thus, making it invisible enormously affect the gameplay.
The authors performed a set of experiments to observe the
impact of ‘player’s spaceship sprite’ on the game. They
removed the player’s spaceship sprite and observed the
impact on the gameplay.

Implementation: The bug ‘Sprite Disappearing’ makes
the bottom 20% of the screen black. This bug has an insig-
nificant impact on the screen because it blackens only the
bottom 20% pixels of the screen. The objective of this bug
is only to remove the players’ sprite, which appears only at
the bottom of the screen.

Expected Behavior: The bug ‘Sprite Disappearing’ is dif-
ficult to detect because it causes a negligible variation in loss
function value.

Actual Behavior: The behavior of the model is indistin-
guishable in the presence and absence of the bug ‘Sprite

Disappearing’ because it does not significantly change the
value of the loss function.

Figure 6 demonstrates the deviation in the value of the
loss function on inserting the bug ‘Sprite Disappearing’ in
the game at different iterations.

It is clear from the graphs shown in Fig. 6a, b that insert-
ing the bug ‘Sprite Disappearing’ at the iteration range from
100,000 to 150,000 and 420,000 to 450,000, the model
shows the exact value of the loss function as 0.28. Whereas,
inserting the bug from 350,000 to 400,000 iterations, a small
increase of 0.1 is observed in the value of the loss function.
In this case, the value of the loss function becomes 0.29, as
shown in Fig. 6c.

It is observed from the graphs shown in Fig. 6a–c) that the
model reports negligible variations in the highest values of
loss function when the ‘Sprite Disappearing’ bug is inserted
at a different range of iterations. The model gradually learns
the mechanism of the game and updates its weights with a
change in the values of the loss function.

Fig. 6 a Loss function
with ‘Sprite Disappearing’
bug inserted at the iteration
range from 100,000 to 150,000.
b Loss function with ‘Sprite
Disappearing’ bug inserted at
the iteration range from 350,000
to 400,000. c Loss Function
with ‘Sprite Disappearing’
bug inserted at the iteration
range from 420,000 to 450,000

(a)

(b)

(c)

Iteration Number

Iteration Number

Iteration Number

lo
ss

 fu
nc

tio
n

lo
ss

 fu
nc

tio
n

lo
ss

 fu
nc

tio
n

 Int. j. inf. tecnol.

1 3

5 Discussion

In this manuscript, we achieved the objective of design-
ing an automatic deep reinforcement learning based model
‘RLBGameTester’ for automating bug detection in a video
game. The proposed approach is game independent, and
need minimum human intervention even to find unknown
bugs. Also, the proposed model is independent of the game
environment. It ensures the robustness of the model. The
‘RLBGameTester’ is efficient in detecting logical mistakes
as well as visual bugs present in the game. Moreover, this
model marks the bug or abnormal behavior encountered
in the game. We explored the possibility of using deep
learning techniques to detect bugs that cannot be detected
by pattern matching. Whereas, the game testing technique
proposed in reference [8] is game specific. It needs to be
customized for each game. This computer vision based
strategy automatically detects the anomalies in the video
outputs of the game. But, it looks only for the visual bugs
and ignores the logical mistakes in the game. The authors
in reference [16] discussed that the techniques available
in the literature require human supervision and coordi-
nation. It requires manual monitoring only to view and
edit notable instances. Therefore, it reduces the need for
human supervision. The minimum human supervision,
high robustness, automatic testing of the game, and plat-
form independence may prove helpful to apply in the game
industry. It is recommended to apply on a segment of the
game rather than a complete game because this model
requires high computational power.

Next, the bug finder proposed in [25] is based on recent
developments in applying reinforcement learning to aid
video game developers. However, it is a tool designed that
can be used by video game testers rather than automatic
bug detection. Thus, it incurs extra human efforts and cost
to bug detection.

Similarly, the authors in [26] proposed a very through
testing engine for bug detection. But, it requires “test ora-
cles” or tools to determine whether the current stage in
the game is valid, or need to be flagged as an error. On the
other hand, our approach uses the reinforcement learning
algorithm to understand anomalous behavior, and enabling
end-to-end autonomous testing. It requires very little human
intervention only to confirm that a particular behavior is a
bug or an intended feature.

6 Conclusion

In this manuscript, the authors applied the DQN algorithm
to develop the model ‘RLBGameTester’ to understand the
mechanism of a game thoroughly. The model is trained for
490,000 iterations. It is trained and tested in a bug-free game

environment as well as by inserting three different types of
bugs ‘white dots’ or ‘black screen’ or ‘sprite disappearing’.
Figures 4, 5 and 6 showcase the variations in the values of
the loss function for observation of the impacts of each type
of bug on the game environment.

The proposed model relies solely on an input screen and
the prebuilt reward system. It can be employed in a video
game of a high level of complexity and learns to play the
game without any human supervision. Moreover, the model
is efficient in playing multiple games which are entirely dif-
ferent in the playing styles and game mechanics. It implies
that the model will prove an effective testing agent for ver-
satile games and in different environments.

The experimental results prove that the model shows a
sharp increase or decrease in the loss value when the bug is
encountered in the game. The deviations in the values of loss
function at different iterations are recorded in the graphs.
The peaks in the graphs, reports the iteration number where
the bug appears in the game. Thus, this model is useful in
identifying the type(s) of bug(s) present in a bug and also
the point where the bugs were encountered. The model will
prove useful in the game industry for automatic testing the
video games to detect the presence of the bugs ‘white dots’,
‘black screen’, and ‘sprite disappearing’. However, it needs
to be trained in an entirely bug-free environment also. It is
feasible only in a closed system or a bug-free sample of the
game.

However, our approach has potential of autonomous
testing it is limited to Atari games. It can be scaled up
for other games to add value to the video game industry.
Next, the approach used in [26] is incredibly helpful in
improving exploration and testing harder to reach stages
of the game. Such approaches could be integrated to create
a more generalizable tool for video game testing.

Funding The work presented in this manuscript is not funded by any
private or Government funding agency.

Data availability NA.

Code availability The code is available with authors. The code will
be submitted after receiving the decision for the submitted manuscript.

Declarations

Conflict of interest The authors declare that, there is no conflict of
interest associated with this research.

References

 1. Vlachopoulos D, Makri A (2017) The effect of games and simu-
lations on higher education: a systematic literature review. Int

Int. j. inf. tecnol.

1 3

J Educ Technol High Educ 14(1):22. https:// doi. org/ 10. 1186/
s41239- 017- 0062-1

 2. Berg Marklund B, Engström H, Hellkvist M, Backlund P (2019)
What empirically based research tells us about game develop-
ment. Comput Games J 8(3–4):179–198. https:// doi. org/ 10.
1007/ s40869- 019- 00085-1

 3. Aleem S, Capretz LF, Ahmed F (2016) Critical success factors
to improve the game development process from a developer’s
perspective. J Comput Sci Technol 31(5):925–950. https:// doi.
org/ 10. 1007/ s11390- 016- 1673-z

 4. Arzate Cruz C, Ramirez Uresti JA (2017) Player-centered game
AI from a flow perspective: towards a better understanding of
past trends and future directions. Entertain Comput 20:11–24.
https:// doi. org/ 10. 1016/j. entcom. 2017. 02. 003

 5. Coates A, Abbeel P, Ng AY (2017) Autonomous helicopter
flight using reinforcement learning. Encyclopedia of machine
learning and data mining. Springer US, Boston, pp 75–85.
https:// doi. org/ 10. 1007/ 978-1- 4899- 7687-1_ 16

 6. Tesauro G (2002) Programming backgammon using self-teach-
ing neural nets. Artif Intell 134:1–2. https:// doi. org/ 10. 1016/
S0004- 3702(01) 00110-2

 7. Mnih V et al (2013) Playing atari with deep reinforcement
learning

 8. Ariyurek S, Betin-Can A, Surer E (2021) Automated video
game testing using synthetic and humanlike agents. IEEE Trans
Games 13(1):50–67. https:// doi. org/ 10. 1109/ TG. 2019. 29475 97

 9. IBF de MSABJRCS JHJKJ, P. R. P. J. P. H. C. M. S. L. L. S.
N. N. A. K. Z. Yunqi Zhao (2020) Winning isn’t everything:
enhancing game development with intelligent agents. Arxiv-
Comput Sci-Artif Intell 1–14

 10. Qureshi AH, Nakamura Y, Yoshikawa Y, Ishiguro H (2017)
Robot gains social intelligence through multimodal deep rein-
forcement learning

 11. Agarwal M, Rani G, Dhaka VS (2020) Optimized contrast
enhancement for tumor detection. Int J Imaging Syst Technol
30(3):687–703. https:// doi. org/ 10. 1002/ ima. 22408

 12. Rani G, Jindal A (2020) Real-time object detection and tracking
using velocity control. 767–778. https:// doi. org/ 10. 1007/ 978- 981-
13- 8406-6_ 72

 13. Nitesh Pradhan HC, Dhaka VS, Rani G (2022) Machine learning
model for multi-view visualization of medical images. Comput J
65(4):805–817

 14. Aleem S, Capretz LF, Ahmed F (2016) Game development soft-
ware engineering process life cycle: a systematic review. J Softw
Eng Res Dev. https:// doi. org/ 10. 1186/ s40411- 016- 0032-7

 15. Giannakopoulos P, Cotronis Y (2018) A deep Q-learning agent
for the L-game with variable batch training

 16. Hernández Bécares J, Valero CL, Gómez Martín PP (2017) An
approach to automated videogame beta testing. Entertain Comput
18:79–92. https:// doi. org/ 10. 1016/j. entcom. 2016. 08. 002

 17. Davis J, Hsieh Y-H, Lee H-C (2015) Humans perceive flicker
artifacts at 500 Hz. Sci Rep 5(1):7861. https:// doi. org/ 10. 1038/
srep0 7861

 18. Deep Q-Network, PyTorch with (2022) https:// towar dsdat ascie
nce. com/ deep-q- netwo rk- with- pytor ch- 146bf a939d fe. Accessed
02 Jul 2022

 19. Varvaressos S, Lavoie K, Gaboury S, Hallé S (2017) Automated
bug finding in video games. Comput Entertain 15(1):1–28. https://
doi. org/ 10. 1145/ 27005 29

 20. Meredith PO, Jin D, Griffith D, Chen F, Roşu G (2012) An over-
view of the MOP runtime verification framework. Int J Softw
Tools Technol Transf 14(3):249–289. https:// doi. org/ 10. 1007/
s10009- 011- 0198-6

 21. Colombo C, Pace GJ, Schneider G (2009) LARVA---safer moni-
toring of real-time java programs (Tool Paper). In: Seventh IEEE
international conference on software engineering and formal
methods, 2009, pp 33–37. https:// doi. org/ 10. 1109/ SEFM. 2009. 13

 22. Barringer H, Havelund K (2011) TraceContract: a scala
DSL for trace analysis. pp 57–72. https:// doi. org/ 10. 1007/
978-3- 642- 21437-0_7

 23. Cunneen M, Mullins M, Murphy F, Shannon D, Furxhi I, Ryan C
(2020) Autonomous vehicles and avoiding the trolley (Dilemma):
vehicle perception, classification, and the challenges of framing
decision ethics. Cybern Syst 51(1):59–80. https:// doi. org/ 10. 1080/
01969 722. 2019. 16605 41

 24. 18. NVIDIA Isaac: Virtual Simulator for Robots: 2018.”
 25. Joakim LG, Bergdahl C, Gordillo K, Tollmar (2021) Augmenting

automated game testing with deep reinforcement learning. Arxiv
Comput Sci Learn. https:// doi. org/ 10. 48550/ arXiv. 2103. 15819

 26. Zheng Y, Xie X, Su T, Ma L, Hao J, Meng Z, Liu Y, Shen R,
Chen Y, Fan C Wuji: automatic online combat game testing using
evolutionary deep reinforcement learning. s://crazynote.v.netease.
com/2021/1011/e38c5f3d60a830785f1bdd8b69563c45.pdf

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1186/s41239-017-0062-1
https://doi.org/10.1186/s41239-017-0062-1
https://doi.org/10.1007/s40869-019-00085-1
https://doi.org/10.1007/s40869-019-00085-1
https://doi.org/10.1007/s11390-016-1673-z
https://doi.org/10.1007/s11390-016-1673-z
https://doi.org/10.1016/j.entcom.2017.02.003
https://doi.org/10.1007/978-1-4899-7687-1_16
https://doi.org/10.1016/S0004-3702(01)00110-2
https://doi.org/10.1016/S0004-3702(01)00110-2
https://doi.org/10.1109/TG.2019.2947597
https://doi.org/10.1002/ima.22408
https://doi.org/10.1007/978-981-13-8406-6_72
https://doi.org/10.1007/978-981-13-8406-6_72
https://doi.org/10.1186/s40411-016-0032-7
https://doi.org/10.1016/j.entcom.2016.08.002
https://doi.org/10.1038/srep07861
https://doi.org/10.1038/srep07861
https://towardsdatascience.com/deep-q-network-with-pytorch-146bfa939dfe
https://towardsdatascience.com/deep-q-network-with-pytorch-146bfa939dfe
https://doi.org/10.1145/2700529
https://doi.org/10.1145/2700529
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1080/01969722.2019.1660541
https://doi.org/10.1080/01969722.2019.1660541
https://doi.org/10.48550/arXiv.2103.15819

	A deep reinforcement learning technique for bug detection in video games
	Abstract
	1 Introduction
	2 Literature review
	3 Background
	3.1 Structure of a video game
	3.2 Techniques of finding bugs in video games
	3.2.1 Manual testing
	3.2.2 Runtime monitoring
	3.2.3 Reward hacking

	4 Materials and methods
	4.1 Experiments
	4.1.1 Hyper parameters of DQN
	4.1.2 Test plan
	4.1.3 Training and testing the model
	4.1.4 Mechanism of bug detection

	4.2 Results
	4.2.1 Testing environments
	4.2.2 White dots propagation
	4.2.3 Black screen propagation
	4.2.4 ‘Sprite disappearing’ propagation

	5 Discussion
	6 Conclusion
	References

