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1 Introduction

Increasing the interest of young minds towards technology 
is a crucial reason for spending significant time on screen. It 
has attracted the researchers to focus on designing and devel-
oping techno-games such as Space Invaders, The Legend of 
Zelda, Mario and Pacman, etc. These games are a source of 
entertainment for people of all age groups. Moreover, Vla-
chopoulos, and Makri discussed that computer-based games 
are a good source of enhancing learning from kindergarten 
to higher education [1]. These games help to improve the use 
and to enhance the coordination into different sense organs.

We observe a consistent rejection of computer games 
due to programming errors. Delicate product bugs are dis-
appointing for players, expensive for publishers, and destruc-
tive to their notoriety. For instance, a bug in the ‘Nintendo’ 
release of ‘The Legend of Zelda: Breath of the Wild’ in 2017 
facilitates the players to progress playing but allows them to 
bypass the effects of temperature on the game. It leads to a 
significant degradation in the entertainment of playing the 
game [2]. Moreover, the ‘NBA Elite 2011’ got rejection due 
to issues in its programming quality [3].

There is a vital requirement to detect the programming 
bugs to minimize the chances of rejection of the developed 
games as early as possible. It gives time for bug removal 
from a game before its actual implementation. It is also help-
ful for frameworks where it is difficult to adjust a mistake 
once launched or delivered. Therefore, a need to introduce 
effective testing mechanisms arises. State-of-the-art reveals 
a significant contribution in bug detection. For example, the 
researchers Cruz, and Uresti give details of the impacts of 
Artificial Intelligence (AI) on game developers [4]. They 
claimed the use of AI and its tools in the game designing, 
developing, and testing.
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Further developments in AI introduced the use of rein-
forcement learning in different domains. It is applied in 
various application areas such as performing troublesome 
aerobatic stunts with a helicopter [5], playing Backgammon 
robotics [6], playing Atari game [7], and video game test-
ing [8]. Reinforcement learning is applied to develop auto-
matic and artificial reasoning, enabling a machine to play 
aggressively against the global data of sports champions [9]. 
It creates advancements in virtual benchmarks set to test 
the reinforcement agents. Reinforcement learning is also a 
promising way to deal with numerous issues such as in-gen-
uine assignments, checking generalizability of formulations 
in a controlled setting [9], simulating social intelligence to 
facilitate human-machine interaction, and creating coordina-
tion in robots to synchronize their movements [10].

It is clear from the above discussion that reinforcement 
learning is helpful in problem-solving and sequential deci-
sion making. Hence, it can fulfill the requirements of game 
designing, developing, and testing. Moreover, the existing 
models require human supervision for testing the perfor-
mance of a player at each state. It motivated the authors 
to apply reinforcement learning for developing the tool for 
automated testing of a game environment without human 
supervision.

In this manuscript, the authors propose the model 
‘RLBGameTester’ that makes effective use of reinforcement 
learning for designing and testing a game environment. This 
AI-based self-learning model identifies the discrepancies 
such as blank screens and incorrect refreshing of the game 
state under a specific set of conditions. The model aims at 
minimizing the requirement of manual testing and reducing 
the cost of testing a game. The major contributions of this 
research are as follows:

• Developing a reinforcement learning based tool for auto-
matic bug detection in a video game.

• Minimize the human intervention in bug detection.
• Reduce the requirements for manual and periodic testing 

of a game.
• Minimize the cost of testing a video game.

The remaining part of the manuscript is organized as; 
Sect. 2 presents the related literature. Section 3 offers the 
background, and Sect. 4 demonstrates the materials and 
methods. Section 4 also covers the experimental results. 
Section 5 contains the discussion, and Sect. 6 presents the 
conclusions of the work.

2  Literature review

Artificial intelligence has proven its potential in contrast 
enhancement [11], object detection [12], and medical 

imaging [13]. Recent advancements in artificial intelligence 
increased the applications of reinforcement learning in dif-
ferent domains such as neuroscience, optimization control, 
business strategy planning, aircraft control, robot control, 
and game designing. Here, the authors focus on the research 
works available in-game designing and testing.

The authors in reference [2], presented the review of 
game designing models. They discussed that the ad-hoc 
methods of game designing that are driven by experience 
are the most opted strategies in the game industry. Next, the 
authors in [14] gave a systematic review of the software life 
cycle adapted for game development. They concluded that 
there is a lack of a standard software life cycle for develop-
ing the game. They also highlighted that most of the research 
works focus on the game development stage. Game testing 
is still a less exploited area of the game industry.

A majority of environments are designed to offer the 
rewards only at the final state (s) of a task. For example, in 
a game, the player is rewarded with points on completing 
a level of the game. On the other hand, the earned reward 
points are decreased as a punishment for losing a life in the 
game. There is no track of the rewards at intermediate states. 
Thus, it is difficult to track the performance of a player in 
medium conditions. To address this issue, the authors in [3] 
presented the techniques for improvement in game design-
ing. For further improvements Giannakopoulos, and Cot-
ronis successfully implemented the Q-learning network [15]. 
It is a model-free algorithm to train the agent for making the 
best suitable decision in a specific set of conditions. This 
technique of reinforcement learning simplifies the game 
environment. A simple game environment favors an agent 
to understand the far-reaching implications of acting [4].

Moreover, Q learning provides the false values of the 
reward at each state. This value is named the Q value of 
the state. The continuously assigned tips reveal information 
about the degree of progress achieved at each state. Thus, it 
resolves the problem of tracking the performance of a player 
in intermediate conditions.

DeepMind builds the Deep Q-Network (DQN) model that 
uses a deep learning model to predict the Q value of each 
state [7]. It uses multiple layers of the artificial perceptron 
to achieve higher levels of abstraction. These values are 
evaluated to get the best possible next step. It ensures the 
maximum potential Q value for the next state. For a wide 
variety of games designed for humans, the DQN model is 
efficient in playing at the human level or higher level(s) than 
human beings.

The study of the research in-game testing shows that the 
video game testing industry is entirely dependent on human 
testers. Very little innovation is observed in this field. The 
authors in [8] and [16] attempted to introduce automation 
for detecting logical bugs in a game. However, it requires an 
independent testing tool for each game. Moreover, it requires 
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detailed information about the internal state(s) of a game. 
Also, it is ineffective in identifying the visual bugs in a 
game. For example, it is unable to detect a bug if the change 
in value affects the speed of players without visualizing any 
effect on the screen. In such a scenario, DQN considers the 
entire screen and the scores as inputs. DQN uses the Con-
volutional Neural Networks (CNN) to handle the raw pixel 
inputs of the screen. It is completely autonomous and does 
not require a human player to play the game while searching 
the bugs. It is efficient in playing the game and searching for 
bugs simultaneously. Based on the advantages, the authors 
employed the DQN to develop the model ‘RLBGameTester’ 
proposed in this manuscript.

3  Background

In this section, the authors present the details about the 
structure of a video game, techniques used to develop and 
test a video game.

3.1  Structure of a video game

The literature study teaches that most techno games are 
designed using the concepts of object-oriented program-
ming. In this approach, each element of a game is an object. 
The centralized piece of code is written for the game. This 
code is named the game loop. Each object present in this 
loop is monitored and recalculated. However, no change in 
the state is done without receiving a response from a user.

A mechanism is included in each game to ensure that 
it is played at a pre-set speed. The number of Frames Per 
Second (FPS) determines the rate of playing a game. FPS is 
the number of new frames displayed to the player in one sec-
ond. The studies demonstrate that human beings can observe 
changes up to 500 FPS [17]. However, FPS is set to 60 for 
a pleasant viewing experience while playing. There are two 
methods to control the FPS: (i) fixed frame rate and (ii) vari-
able frame rate. In a fixed frame rate, the computer runs the 
game loop faster than the required rate and then calls a sleep 
function. This function sets the refresh rate precisely equal 
to the value of the input parameter. If sleep function takes a 
longer time, then the game appears to lag.

On the contrary, in the variable frame rate, the computer 
shows a new frame at the end of each game loop. Here, the 
refresh rate can be higher than the set parameter. It may lead 
to inconsistency because it takes variable periods in different 
iterations to complete the game loop. The Deep-Q-Network 
(DQN) algorithm [18] is employed for game designing. The 
algorithm uses ‘Q’ value of each state of the game and learns 
the best action to perform at a given state. The deep neural 
network of DQN is useful for estimating ‘Q’ value function.

3.2  Techniques of finding bugs in video games

The attack of bugs in the running environment of a video 
game is a cause of unexpected interruptions in the game 
environment. To find the bugs, the game developers rely on 
the adoption of one of the following testing techniques in the 
life cycle of a game project.

3.2.1  Manual testing

In this strategy, the testing team needs to write rigorous test 
cases for testing the gameplay environment and the usability 
of the game. At an initial stage, an implicit testing process 
is carried out to perform a set of tests to remove the errors 
from the code. For further testing, an external and inter-
nal testing team(s) design rigorous test cases. Each game 
tester manually reports every bug identified with a detailed 
description. Now, the programmers address these bugs with 
utmost priority [19].

In case an updated version of the game is launched, it is 
sent to the bug testers. In such cases, the main objectives 
are to test the new features and functionalities added to the 
previous version of the game. Introducing new features in 
a game can potentially create bugs in earlier modules of 
a game. Thus, there is a vital requirement of a complete 
assessment of the code and to report the bugs in an updated 
version of the game.

This manual testing strategy requires a workforce. 
Designing test cases and identifying bugs manually is a 
time-consuming process. Hence, it is costly. Moreover, the 
number of test cases is limited. In this strategy, testers can 
only report bugs visible to them on the Graphical User Inter-
face (GUI). Also, the detection of bugs is dependent on the 
knowledge of the testing team(s). There can be a possibility 
that one or more bugs remain unnoticed, or one or more 
essential features of the game can be flagged as a bug(s).

3.2.2  Runtime monitoring

In this strategy, the monitoring of the game is done at runt-
ime for dynamically checking and enforcing the constraints. 
This is successful in monitoring the working of a game at 
the finer level [19].

In this strategy, the game is constantly evaluated based on 
the pre-set rules. For example, the jump time cannot exceed 
3-s, and jump height is limited to 7-units in a particular 
game. If any of the pre-set rules are violated, the monitoring 
system will reevaluate values and attempt to bring consist-
ency again.

The runtime monitoring requires a specific set of rules 
for each game. Also, the game tester needs to understand 
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the details of the code. The requirement to perform the 
game-specific code intrusion and understand each game’s 
working mechanism is quite tricky. This created the 
demand for developing a generalized solution that requires 
minimal code intrusion.

The research community contributed to developing the 
game monitoring systems with minimal code intrusion. 
They developed monitoring systems such as JavaMOP 
[20] and LARVA [21]. But, all these systems focus on 
monitoring method calls in Java programs. Thus, these 
are game-specific as well as dependent on the program-
ming language. Moreover, there is a negligible scope to 
employ these systems in other programming languages. 
Therefore, it becomes a point of concern for the game 
developers who develop their programming languages and 
Unreal Script [22] for developing the games. In such cases, 
the pre-developed monitoring systems fail to perform the 
runtime verification of games.

3.2.3  Reward hacking

In reinforcement learning, ‘Reward Hacking’ is when the 
model learns to take advantage of the unintended conse-
quences of one or more actions in the simulated world. 
This happens due to the inability of human beings to 
specify the expectations that an AI-based system can fully 
understand. This inability is called the value-alignment 
problem. Furthermore, the failure to predict the exact 
action of an agent makes the method unreliable because it 
can cause a threat to human life in critical situations [23].

In the modern era, erroneous coding practices cause an 
exponential increase in in-game releases with bugs. The 
high complexity of games makes the debugging process 
extraordinarily lengthy and challenging. The reward hack-
ing is beneficial to game developers and testers to uncover 
bugs from the complex games.

For example, in the game ‘Coast Runner’s boat racing’, 
the agent learns how to maximize the game’s score by 
spinning in circles and colliding with objects rather than 
racing. This indicates that the reward function is inappro-
priate for the racing game. In one more example, QBert 
Atari proposed the reinforcement learning algorithm and 
uncovered a bug in the game that remained unknown to 
humans [7]. These algorithms identify the inconsistencies 
in the game. Thus, these can learn ways to cheat in a game.

The above discussion shows that manual and run-time 
testing challenges can be resolved by applying the deep 
learning models. The effectiveness of these models in 
designing and testing the games gives the inspiration to 
develop a deep reinforcement learning model ‘RLBGame-
Tester’ for game playing as well as monitoring the internal 
loss functions of the game to identify a bug.

4  Materials and methods

In this section, the authors will discuss the experimental 
setup and the dataset used to evaluate the model ‘RLB-
GameTester’. They will also discuss the experimental results 
obtained on performing the set of experiments.

4.1  Experiments

The authors used python 3.6 for developing the model. They 
used the ‘Tensorflow’ for implementing the Deep Q-Net-
work (DQN). The authors performed the set of experiments 
using the ‘paperspace’ cloud platform. They executed their 
model on ‘Ubuntu 14.04’ Operating System (OS) and the 
graphic card ‘Nvidia Quadro p4000’ on GPU.

The DQN based model ‘RLBGameTester’ is designed by 
implementing the Q-learning algorithm. The authors applied 
the standard approach given at [24] to re-calculate the value 
of ‘Q’ for each possible action. This approach requires a 
forward pass for each step. Each pass linearly adds the com-
putational cost of increasing the number of possible activi-
ties. The architecture of ‘RLB-GameTester’ is designed so 
that a single forward pass can calculate the values of ‘Q’ for 
all possible actions [3] resolves the problem of an increase 
in computational cost.

4.1.1  Hyper parameters of DQN

The proposed model ‘RLB-GameTester’ uses the following 
hyperparameters.

 (i) Batch Size: Batch size represents the number of games 
running in parallel. In this manuscript, the authors 
chose the batch size of 32 instances.

 (ii) Random start: It represents the maximum frame num-
ber where the game can start. In this manuscript, the 
random start is set at 30. This shows that the game can 
start randomly from any fame number from 0 to 29.

 (iii) CNN_format of data layout: The 4-Dimensional (4-D) 
array that contains the information in the form of 
Number of Images (N), number of feature maps (C), 
image height (H), and the image width (W). The data 
layout’ NCHW’ is the default layout in tensor flow. 
Here, ‘N’ denotes the number of batches, ‘C’ is the 
number of channels, ‘H’ is the height, and ‘W’ is the 
width of the data. It is ideal for training with Nvidia 
GPUs available at [24]. Therefore, in this manuscript, 
the authors used the ‘NCHW’ data layout for experi-
ments.

 (iv) Discount: This is an arbitrary value multiplied by the 
target Q-value to avoid the problem of overfitting. For 
the experiments, the authors set the value of discount 
as 0.99 based on its impact on the performance of 
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the model. The increase in its value to 1 or above 
forces the model to assign a higher weightage to gains 
obtained from the forthcoming steps. This may lead 
to a hike in the reward of any step up to infinity. On 
the contrary, the decrease in its value forces the model 
to assign the low weightage to the forthcoming steps. 
Therefore, the model takes shortsighted steps to boost 
its rewards.

 (v) Learning_rate: The learning rate of the model is a 
parameter that determines the change in the weights 
per epoch. It represents the initial learning rate of the 
model. The authors set the value of Learning_rate as 
0.00025 based on the results obtained on performing a 
set of experiments. On increasing its value beyond the 
pre-set value, the model becomes ineffective to con-
verge at the point of global minima. This happens due 
to its constant overestimation of the weight change 
because of a high learning rate. On the other hand, the 
decrease in its value takes a long time to converge to 
the global minima. This happens because the learning 
steps are too long.

 (vi) Learning_rate_minimum: This is the minimum learn-
ing rate of the model. The authors used its default 
value, 0.00025.

 (vii) Learning_rate_decay: This represents the rate of 
change in the learning rate. The authors set the value 
of Learning_rate_decay as 0.96 based on the set of 
experiments. Increasing or decreasing its value up to 
4% did not degrade the performance of the model. 
This is due to the fact that; the current learning rate of 
the model is equal to the minimum learning rate that 
does not decrease further.

 (viii) Learning_rate_decay_step: It represents the step num-
ber after which the learning rate of the model changes. 
The authors set the Learning_rate_decay_step as 500. 
It indicates that the learning rate of the model varies 
after every 500 steps. On performing the set of experi-
ments, the authors observed that this value does not 
affect the model’s performance. This is because the 
current learning rate is equal to the minimum learning 
rate, and it will not decrease further.

 (ix) History_length: It is the number of frames stored in 
the history of the model. The model refers, its history 
length at every training state. In this manuscript, the 
authors set the value of History_length as 4. The value 
is selected based on the number of frames required to 
gather enough information needed for decision mak-
ing. For example, in a turn-based game such as chess, 
a single frame is sufficient. On the contrary, the car 

racing game requires multiple frames to understand 
the position and speed of cars, direction of movement, 
and acceleration. On performing the set of experi-
ments, the authors observed that there is no change in 
the performance of the model on increasing its value 
beyond four.

 (x) Train_frequency: It is the number of frames encoun-
tered between two successive training steps. In this 
manuscript, the authors set the value of Train_Fre-
quency as four based on the set of experiments. The 
training step is not required at each frame because 
tiny information gain occurs between two consecutive 
frames. Information increases significantly at every 
stage 4th frame.

 (xi) Learn_start: It is the step number at which training of 
the model starts. The authors set the value of Learn_
start as 500. It indicates that the training of the model 
begins at the 500th step. In earlier steps, the model 
records the significant information about the mecha-
nism of the game.

 (xii) Min_delta: It is the minimum value of reward fed to 
the model. The authors set their value as − 1. There-
fore, the value of the negative reward function can 
reach up to − 1. It is useful in avoiding the problem 
of attaining the extreme values of the reward function. 
Thus, it resulted in efficient training of the model.

 (xiii) Max_delta: It is the maximum value of reward fed to 
the model. The authors set its value as 1. Therefore, 
the maximum reward function can attain the highest 
value 1. It helps in avoiding the problem of extreme 
values of the reward function. Hence, the training of 
the model is effective.

 (xiv) Screen_width and screen_height: These are the dimen-
sions of the screen in terms of its width and height. 
The model received these as input. The authors set the 
value of dimensions 84 × 84 for the model ‘RLBGam-
eTester’.

4.1.2  Test plan

The authors used the above mentioned list of hyper param-
eters and implemented the test plan given in algorithm 1 for 
automatic bug detection in a game.

Algor i thm  1:  Test  p lan for  the  proposed 
‘RLBGameTester’
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as input. At the initial step, a point is identified, where the 
game screen is fed as an input to the model. At the next 
step, a point is identified where the changes in the input are 
made before it is fed to the model. Identifying these points 
is essential for defining the number of iterations required 
to insert a bug into the game and developing the following 
three types of bugs.

 (i) White dots: This bug inserts a random number of pix-
els into the screen before its image is given as input 
to the model. The random number is pre-set in the 
range of 10–20 white dots of dimension 4 × 4 pixels. 
The model randomizes the positions of these pixels 
in each frame. This bug leads to the appearance of 
10–20, flickering and random white dots on the screen 
to a human player.

 (ii) Black Screen: Here, the value of the current reward is 
given as an input to the model. But, no visual infor-
mation is fed to the model. The model is still in the 
control of sprite. Therefore, it can control the rewards 
up to a pre-set extent. This bug makes the appearance 
of the entire screen black. It seems that the game is 
completely crashed.

 (iii) Sprite Disappearing: The bottom 20% of the screen 
disappears when this bug is encountered in the game. 
It implies that the player’s sprite disappears, and the 
spaceship is not visible. It leads to the loss of enor-
mous information. But, it does not have a significant 
impact on the actual screen fed to the model.

After developing the bugs, the authors created different 
functions that received 84 × 84 display as input and warped 

Fig. 1  Process of Phase 1

After following the test plan shown in algorithm 1, it was 
observed that that the values of loss function of the DQN 
rises when it encounters unfamiliar states such as bugs.

4.1.3  Training and testing the model

The authors selected the game ‘Space Invaders’ for training 
and testing the proposed model. The following two reasons 
favor the selection of ‘Space Invaders’.

 (i) In this game, the model achieved a better performance 
than human beings. It indicates that the model suc-
cessfully learned the entire mechanism of the game.

 (ii) The game ‘Space Invaders’ includes a large number 
of moving objects. Thus, the model becomes resist-
ant to visual bugs. The insertion of a bug degrades 
the performance of the model. In the worst case, the 
model fails to detect bugs due to the high complexity 
of the game.

To evaluate the performance of the model ‘RLBGam-
eTester,’ the authors created three different bug propaga-
tions and testing environments using DQN. They trained the 
model for all the three bug propagations and testing environ-
ments on a single game running platform. In the training 
session, the bugs are propagated manually. The values of 
loss function are calculated before and after the bug propa-
gation. A sudden spike in the loss function and decrement 
in the reward function shows that there is a bug in the run-
ning game environment. Thus, the system fails to play as 
efficiently as it could play in a bug-free environment. The 
authors explain the building, preparation of the environment, 
and training of the model in the following two phases.

Phase 1 This phase involves the building of the model and 
preparation of the environment.

The authors reduced the size of the input screen to 
84 × 84. Also, they reduced the number of channels to one. 
Thus, the model receives a single 84 × 84 grayscale display 
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the images to mimic the appearance of bugs. Now, the model 
is trained and tested at different stages. On performing a set 
of experiments, the authors claim that 420,000 iterations are 
sufficient for training the model.

In Phase 1, the model defines the iteration where the bug 
is to be inserted as an input to the game. The identified itera-
tions and different types of bugs developed are useful for 
understanding the capabilities of the proposed model in the 
detection of bugs into a game. Figure 1 shows the process 
involved in Phase 1 of the experiment.

Phase 2 This phase is designed to monitor the changes in 
the value of loss function on executing the model at the pre-
set parameters. It completes the rigorous training and testing 
of the model in three steps.

In the first step, the model is trained without any bug. 
The training is performed for 420,000 iterations. It famil-
iarizes the model with the details of the code and the 
working mechanism of the game. The loss function val-
ues during this training step are recorded in a graph, as 
shown in Fig. 3. These values are used as a reference point 
to compare the model’s performance after inserting the 
bug. At the next step, one or more bug(s) are introduced 
in the game. Now, the model is trained for the next 30,000 
iterations. The values of change in the loss function are 
recorded in a graph. The model is again executed in a bug-
free environment at the last step, for the iteration range 
from 450,000 to 500,000. It is crucial to test the robustness 
of the model when it is reverted to the original gameplay. 
This test is required because, in most of the games, the 
bugs do not impact the complete life cycle of the game. 
These bugs appear and disappear sporadically. Figure 2 
shows the set of activities performed in the phase-2 of the 
experiment.

4.1.4  Mechanism of bug detection

A game encounters numerous types of bugs. These bugs 
can be simple such as the crashing of the game, which 
leads to the appearance of a black screen while playing the 
game. On the other hand, the bugs can be involved, such 
as inappropriate dialogue of a character and repeating of 
the word(s) by a character.

One model is not sufficient to deal with all kinds of 
bugs. Therefore, different models are designed to provide 
the best possible solution for a particular type of bug(s).

The proposed model understands the game as a col-
lection of interconnected states. It does not consider any 
temporal relation in these states. This model considers 
each frame as an independent state and identifies a state 
that has never been encountered. The authors in reference 
[8] claimed that the existing model does not consider the 
outputs obtained in previous steps while making the deci-
sion. For example, the game shows unusual behavior for a 
particular input. This behavior is not considered in deci-
sion-making when the same input is given to the model 
at subsequent steps. However, ‘RLBGameTester’ is the 
best suitable model for monitoring and flagging instances 
of visual bugs. The authors developed a function to inter-
cept the screen before it is given as an input to the model, 
test the efficacy of this model in monitoring, and flag the 
instances of visual bugs. This function also inserts visual 
bugs in the model and monitors the average value of the 
loss function.

4.2  Results

For rigorous testing of the model ‘RLBGameTester,’ all the 
test cycles are executed for 490,000 iterations. The data logs 
created on executing the test cycles are collected, analyzed, 
and displayed in graphical form using the tensor board. The 
x-axis of each graph represents the iteration number, and the 
y-axis represents the value of the loss function. A smoothen-
ing function is applied to make the graph easier to visualize 
and improve its readability.

The authors evaluated the performance of the model in 
three different types of testing environments. They intention-
ally inserted the three types of bugs, namely White Dots, 
Black Screen, and Sprite Disappearing, to test the model’s 
bug detection ability and robustness.

4.2.1  Testing environments

Initially, the game is seeded with three types of bugs: (1) 
White Dots, (2) Black Screen, (3) Sprite Disappearing. 
These bugs are seeded before applying the pre-processing 
techniques to detect the bug that may appear in the game 
before pre-processing the screen and the actual starting of Fig. 2  Process of Phase 2
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the game. Inserting these bugs is essential to visualize the 
impact(s) of each type of bug on the model’s performance. 
Now, the pre-processing is applied on the game screen to 
reduce its dimensions. The screen size is reduced from 
210 × 160 to 84 × 84 frames. The number of input channels 
is reduced from three (RGB) channels to a single grayscale 
channel. Thus, the computation time and the cost of the 
‘RLBGameTester’ model decrease.

At the next step, the game screen is given as an input to 
the model. The insertion functions are named as (1) insert 
white dots, (2) insert black screen, (3) hides the players’ 
spaceship. These functions enable embedding a specific type 
of bug after a pre-set number of iterations and at a pre-set 
location of code.

At the last step, the ‘RLBGameTester’ is executed to eval-
uate its performance in the presence of one or more bugs in 
the code. The change in the loss function indicates the pres-
ence of the bug in the code. Figure 3 shows the decline of 
a loss function in a game with a bug-free environment. The 
graph peaks show the growth of bugs. The value of the loss 
function is high at the peaks. It indicates that the ‘RLBGam-
eTester’ model is shifting its weights drastically and learning 
new information. The maximum new information is given at 
these peaks through the screen to improve the model’s adapt-
ability. The new information can be an entirely new screen 
that never appeared before or maybe a new bug. It is clear 
from the graph shown in Figure 3 that the model achieves 
the maximum value of loss function 0.33 at the iteration 
number 20,000. The trends showing the change in values of 
the loss function indicate the updating weights of the model. 
The higher the value of the loss function, the greater will be 
the changes in weights. A higher value of the loss function 
also shows that the new information is given to the model. 
If an abrupt and sharp increase in the loss value is reported, 
then it is a clear indication that either a bug appeared in the 
game or a huge amount of new information is given as an 
input to the model. The testing team does not add any new 
screen to the game used for testing. Therefore, the peaks 
in the graph showing the abrupt rise in the values of loss 
function report the abnormal behavior of the game caused 
by one or more bugs present or inserted into the game. The 

subsequent sub-sections present the propagation of different 
types of bugs and their impact on the value of loss function.

4.2.2  White dots propagation

The authors designed the function ‘white dots propagation’ 
to insert a random number of square-shaped dots in a pre-
set range into the screen. The function receives the size of 
dots and the number of dots appearing on the screen as the 
input parameters.

Implementation: For performing the experiments, the 
authors set the dot size of 2 × 2 and the number of dots in 
the range of 5–20 per screen. The value is one is set for 
the pixels showing the white dots. Whereas the float values 
in the range of 0–1 are set for other grayscale pixels. The 
model uses the ‘randint’ function of NumPy to choose the 
number of dots appearing on the screen. The function ‘white 
dots propagation’ randomizes the positions of dots for each 
frame. It makes the screen non-static and disturbs the player. 
However, in some cases, the model regains its normal behav-
ior even after inserting the bug into it. It ignores the white 
dots and does not cause distractions for the player. It happens 
when the model is rigorously trained until it learns that the 
white dots are irrelevant information.

Expected Behavior: The bug ‘white dots’ is highly vis-
ible. It is very distracting to a human player. It also causes 
an enormous change to the input model. Thus, it is easy to 
spot this bug.

Actual Behavior: The model shows its expected behavior 
before the bug is introduced. Its loss function remains in 
the range of 0–2 in a bug-free environment. After introduc-
ing the bug, the model shows a significant spike in the loss 
function. The value of the loss function rises beyond 100. 
The abrupt and high change in the value of the loss function 
makes this bug easily identifiable.

To instantly identify the bug, the threshold value of the 
loss function is set 3. The value of the threshold, being 
higher than the default value of the loss function, ensures 
that the model will not mislead if there is no bug in the 
game. Figure 4 shows the change in values of the loss func-
tion in a game environment with ‘white dots’ bug inserted 
into the game at different iterations.

Fig. 3  Loss function without 
bug propagation
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On inserting the bug at the range of iterations from 
100,000 to 150,000, the model reports the highest value of 
the loss function 16, as shown in Fig. 4a. It is clear from the 
graph that the model achieves this highest value and shows 
the peak at the iteration number 150,000. On the contrary, 
the highest value of the loss function beacomes 110, when 
the bug is inserted at the range of iterations from 350,000 
to 420,000. It is shown in Fig. 4b that the model achieves 
this highest value and shows the peak at iteration number 
410,000.

On inserting the bug at the range of iterations from 
420,000 to 450,000, the highest value of the loss function 
decreases sharply, and it becomes 0.6. It is clear from the 
graph shown in Fig. 4c that the model achieves this highest 
value and shows the peak at iteration number 420,000.

It is observed from the graphs shown in Fig. 4a–c, that 
the model reports the variations in the highest values of loss 
function when the ‘White Dots’ bug is inserted at a different 
range of iterations. This is because the model continuously 
learns the mechanism of the game and updates its weight 
with a change in the values of the loss function.

4.2.3  Black screen propagation

The function ‘Black Screen’ is designed to simulate the 
crashing of the complete game. The game with the bug 
‘Black Screen’ displays only a black screen. The DQN is still 
fully capable of controlling the game and feeding the inputs.

Implementation: To implement the bug ‘Black Screen’, 
the authors multiplied the input matrices of the screen with 
zero. This fills the complete matrices of the input screen 
of 84 × 84 size with zero values. All entries with zero val-
ues represent that the game has been crashed and it will 
never recover. The function needs to restart for recovering 
the game and continue playing. The effect of this bug is 
permanent. Thus, the authors executed the model for more 
iterations. This is useful for the successful training of the 
model. For example, the other bugs are removed after the 
30,000 to 50,000 iterations. However, this bug is allowed to 
run as a part of the game from 50,000 to 200,000 iterations.

Expected Behavior: The loss function is a combination 
of the actual value of screen inputs and the uncertainty of 
the model. Here, uncertainty the degree of variation in the 

Fig. 4  a Loss function with 
‘White dot bug’ inserted at the 
iteration range from 100,000 to 
150,000. b Loss function with 
‘White dot bug’ inserted at the 
iteration range from 350,000 to 
420,000. c Loss function with 
‘White dot bug’ inserted at the 
iteration range from 420,000 to 
450,000
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model’s behavior to adapt to the changes fed into it. The 
encounter of the bug ‘Black Screen’ results in the abrupt rise 
in the loss function. The bug leads to an abrupt decrease in 
the value of loss if there is a lack of input given to the model.

  Actual Behavior: At the initial stage, before introduc-
ing the bug in the game environment, no deviation from 
the expected behavior of the model is observed. As the 
time for executing the game progresses, the loss function 
of the model fluctuates slightly. However, it seems that 
the fluctuation in the loss function is constant. This shows 
that the model is not learning anything new, and the envi-
ronment is bug-free. The deviation in the loss function 
makes the bug easily identifiable. Figure 5 demonstrates 
the variations in the values of the loss function when the 
bug ‘Black Screen’ is inserted into the game.

The graph is shown in Fig. 5a demonstrates the devia-
tion in the loss function in the presence of the bug ‘Black 
Screen’ in the game environment.

It shows the spike of a loss function in the game envi-
ronment when the bug is inserted at the iterations from 

100,000 to 150,000. The graph peak is obtained at the 
value of 0.35 for the loss function. On inserting this bug 
for the iterations from 250,000 to 450,000, a slight change 
in the highest value of the loss function is observed. The 
highest value of the loss function becomes 0.36, as shown 
in the peak plotted in Fig. 5b. The bug ‘Black screen’ 
causes a slight decrease in the value of loss function 
when it is inserted in the iteration range from 420,000 to 
470,000. As shown in Fig. 5c, the graph peak is obtained 
at the 0.33 value of the loss function.

It is observed from the graphs shown in Fig. 5a–c), that 
the model reports the slight variations in the highest values 
of loss function when the ‘Black Screen’ bug is inserted at 
a different range of iterations. This is because the model 
gradually learns the mechanism of the game and updates 
its weights with a change in the values of the loss function 
when the bug ‘Black Screen’ is inserted into the game.

Fig. 5  a Loss function with 
‘Black Screen’ bug Inserted at 
the iteration range from 100,000 
to 150,000. b Loss function 
with ‘Black bug inserted at the 
iteration range from 250,000 to 
450,000. c Loss function with 
‘Black Screen bug’ inserted at 
the iteration range from 420,000 
to 470,000
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4.2.4  ‘Sprite disappearing’ propagation

Protecting the spaceship is the main objective of the game. 
Thus, making it invisible enormously affect the gameplay. 
The authors performed a set of experiments to observe the 
impact of ‘player’s spaceship sprite’ on the game. They 
removed the player’s spaceship sprite and observed the 
impact on the gameplay.

Implementation: The bug ‘Sprite Disappearing’ makes 
the bottom 20% of the screen black. This bug has an insig-
nificant impact on the screen because it blackens only the 
bottom 20% pixels of the screen. The objective of this bug 
is only to remove the players’ sprite, which appears only at 
the bottom of the screen.

Expected Behavior: The bug ‘Sprite Disappearing’ is dif-
ficult to detect because it causes a negligible variation in loss 
function value.

Actual Behavior: The behavior of the model is indistin-
guishable in the presence and absence of the bug ‘Sprite 

Disappearing’ because it does not significantly change the 
value of the loss function.

Figure 6 demonstrates the deviation in the value of the 
loss function on inserting the bug ‘Sprite Disappearing’ in 
the game at different iterations.

It is clear from the graphs shown in Fig. 6a, b that insert-
ing the bug ‘Sprite Disappearing’ at the iteration range from 
100,000 to 150,000 and 420,000 to 450,000, the model 
shows the exact value of the loss function as 0.28. Whereas, 
inserting the bug from 350,000 to 400,000 iterations, a small 
increase of 0.1 is observed in the value of the loss function. 
In this case, the value of the loss function becomes 0.29, as 
shown in Fig. 6c.

It is observed from the graphs shown in Fig. 6a–c) that the 
model reports negligible variations in the highest values of 
loss function when the ‘Sprite Disappearing’ bug is inserted 
at a different range of iterations. The model gradually learns 
the mechanism of the game and updates its weights with a 
change in the values of the loss function.

Fig. 6  a Loss function 
with ‘Sprite Disappearing’ 
bug inserted at the iteration 
range from 100,000 to 150,000. 
b Loss function with ‘Sprite 
Disappearing’ bug inserted at 
the iteration range from 350,000 
to 400,000. c Loss Function 
with ‘Sprite Disappearing’ 
bug inserted at the iteration 
range from 420,000 to 450,000
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5  Discussion

In this manuscript, we achieved the objective of design-
ing an automatic deep reinforcement learning based model 
‘RLBGameTester’ for automating bug detection in a video 
game. The proposed approach is game independent, and 
need minimum human intervention even to find unknown 
bugs. Also, the proposed model is independent of the game 
environment. It ensures the robustness of the model. The 
‘RLBGameTester’ is efficient in detecting logical mistakes 
as well as visual bugs present in the game. Moreover, this 
model marks the bug or abnormal behavior encountered 
in the game. We explored the possibility of using deep 
learning techniques to detect bugs that cannot be detected 
by pattern matching. Whereas, the game testing technique 
proposed in reference [8] is game specific. It needs to be 
customized for each game. This computer vision based 
strategy automatically detects the anomalies in the video 
outputs of the game. But, it looks only for the visual bugs 
and ignores the logical mistakes in the game. The authors 
in reference [16] discussed that the techniques available 
in the literature require human supervision and coordi-
nation. It requires manual monitoring only to view and 
edit notable instances. Therefore, it reduces the need for 
human supervision. The minimum human supervision, 
high robustness, automatic testing of the game, and plat-
form independence may prove helpful to apply in the game 
industry. It is recommended to apply on a segment of the 
game rather than a complete game because this model 
requires high computational power.

Next, the bug finder proposed in [25] is based on recent 
developments in applying reinforcement learning to aid 
video game developers. However, it is a tool designed that 
can be used by video game testers rather than automatic 
bug detection. Thus, it incurs extra human efforts and cost 
to bug detection.

Similarly, the authors in [26] proposed a very through 
testing engine for bug detection. But, it requires “test ora-
cles” or tools to determine whether the current stage in 
the game is valid, or need to be flagged as an error. On the 
other hand, our approach uses the reinforcement learning 
algorithm to understand anomalous behavior, and enabling 
end-to-end autonomous testing. It requires very little human 
intervention only to confirm that a particular behavior is a 
bug or an intended feature.

6  Conclusion

In this manuscript, the authors applied the DQN algorithm 
to develop the model ‘RLBGameTester’ to understand the 
mechanism of a game thoroughly. The model is trained for 
490,000 iterations. It is trained and tested in a bug-free game 

environment as well as by inserting three different types of 
bugs ‘white dots’ or ‘black screen’ or ‘sprite disappearing’. 
Figures 4, 5 and 6 showcase the variations in the values of 
the loss function for observation of the impacts of each type 
of bug on the game environment.

The proposed model relies solely on an input screen and 
the prebuilt reward system. It can be employed in a video 
game of a high level of complexity and learns to play the 
game without any human supervision. Moreover, the model 
is efficient in playing multiple games which are entirely dif-
ferent in the playing styles and game mechanics. It implies 
that the model will prove an effective testing agent for ver-
satile games and in different environments.

The experimental results prove that the model shows a 
sharp increase or decrease in the loss value when the bug is 
encountered in the game. The deviations in the values of loss 
function at different iterations are recorded in the graphs. 
The peaks in the graphs, reports the iteration number where 
the bug appears in the game. Thus, this model is useful in 
identifying the type(s) of bug(s) present in a bug and also 
the point where the bugs were encountered. The model will 
prove useful in the game industry for automatic testing the 
video games to detect the presence of the bugs ‘white dots’, 
‘black screen’, and ‘sprite disappearing’. However, it needs 
to be trained in an entirely bug-free environment also. It is 
feasible only in a closed system or a bug-free sample of the 
game.

However, our approach has potential of autonomous 
testing it is limited to Atari games. It can be scaled up 
for other games to add value to the video game industry. 
Next, the approach used in [26] is incredibly helpful in 
improving exploration and testing harder to reach stages 
of the game. Such approaches could be integrated to create 
a more generalizable tool for video game testing.
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